Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Int J Pharm ; 653: 123903, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38350500

RESUMO

Phospholipids are versatile formulation compounds with high biocompatibility. However, no data on their effect on skin in combination with UVA radiation exist. Thus, it was the aim of this work to (i) develop o/w nanoemulsions (NEs) differing in surfactant type and to investigate their physicochemical stability at different storage temperatures, (ii) establish a standardized protocol for in vitro phototoxicity testing using primary human skin cells and (iii) investigate the phototoxicity of amphoteric phospholipids (S45, S75, E80, S100, LPC80), sodium lauryl ether sulfate (SLES) and polysorbate 80 (PS80). Satisfying systems were developed with all surfactants except S100 due to low zeta potential (-21.4 mV ± 4.69). SLES and PS80-type NEs showed the highest stability after eight weeks; temperature-dependent variations in storage stability were most noticeable for phospholipid surfactants. For phospholipid-based NEs, higher phosphatidylcholine content led to unstable formulations. Phototoxicity assays with primary skin fibroblasts confirmed the lack of UVA-related phototoxicity but revealed cytotoxic effects of LPC80 and SLES, resulting in cell viability as low as 2.7 % ±0.78 and 1.9 % ±1.57 compared to the control. Our findings suggest that surfactants S45, S75 and PS80 are the most promising candidates for skin-friendly emulsifiers in sensitive applications involving exposure to UV light.


Assuntos
Dermatite Fototóxica , Tensoativos , Humanos , Tensoativos/química , Polissorbatos/farmacologia , Raios Ultravioleta , Fosfolipídeos , Emulsões/farmacologia , Pele
2.
Clin Cancer Res ; 30(1): 159-175, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37861398

RESUMO

PURPOSE: Despite high clinical need, there are no biomarkers that accurately predict the response of patients with metastatic melanoma to anti-PD-1 therapy. EXPERIMENTAL DESIGN: In this multicenter study, we applied protein depletion and enrichment methods prior to various proteomic techniques to analyze a serum discovery cohort (n = 56) and three independent serum validation cohorts (n = 80, n = 12, n = 17). Further validation analyses by literature and survival analysis followed. RESULTS: We identified several significantly regulated proteins as well as biological processes such as neutrophil degranulation, cell-substrate adhesion, and extracellular matrix organization. Analysis of the three independent serum validation cohorts confirmed the significant differences between responders (R) and nonresponders (NR) observed in the initial discovery cohort. In addition, literature-based validation highlighted 30 markers overlapping with previously published signatures. Survival analysis using the TCGA database showed that overexpression of 17 of the markers we identified correlated with lower overall survival in patients with melanoma. CONCLUSIONS: Ultimately, this multilayered serum analysis led to a potential marker signature with 10 key markers significantly altered in at least two independent serum cohorts: CRP, LYVE1, SAA2, C1RL, CFHR3, LBP, LDHB, S100A8, S100A9, and SAA1, which will serve as the basis for further investigation. In addition to patient serum, we analyzed primary melanoma tumor cells from NR and found a potential marker signature with four key markers: LAMC1, PXDN, SERPINE1, and VCAN.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Proteômica , Biomarcadores Tumorais/metabolismo , Análise de Sobrevida
3.
Microbes Infect ; 26(1-2): 105234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37813159

RESUMO

The World Health Organization (WHO) declared certain fungal pathogens as global health threats for the next decade. Candida auris (C. auris) is a newly emerging skin-tropic multidrug-resistant fungal pathogen that can cause life-threatening infections of high mortality in hospitals and healthcare settings. Here, we address an unmet need and present novel native ex vivo skin models, thus extending previous C. auris-host interaction studies. We exploit histology and immunofluorescence analysis of ex vivo skin biopsies of human adult and fetal, as well as mouse origin infected with C. auris via distinct routes. We demonstrate that an intact skin barrier efficiently protects from C. auris penetration and invasion. Although C. auris readily grows on native human skin, it can reach deeper layers only upon physical disruption of the barrier by needling or through otherwise damaged skin. By contrast, a barrier disruption is not necessary for C. auris penetration of native mouse skin. Importantly, we show that C. auris undergoes morphogenetic changes upon skin penetration, as it acquires pseudohyphal growth phenotypes in deeper human and mouse dermis. Taken together, this new human and mouse skin model toolset yields new insights into C. auris colonization, adhesion, growth and invasion properties of native versus damaged human skin. The results form a crucial basis for future studies on skin immune defense to colonizing pathogens, and offer new options for testing the action and efficacy of topical antimicrobial compound formulations.


Assuntos
Candida auris , Candidíase , Animais , Humanos , Camundongos , Candidíase/microbiologia , Modelos Animais de Doenças
4.
J Invest Dermatol ; 143(1): 11-17.e8, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528357

RESUMO

Human skin consists of three compartments, each endowed with a particular structure and the presence of several immune and nonimmune cells that together comprise a protective shield and orchestrate multiple processes in the skin. Appropriate processing of human skin samples acquired from healthy volunteers or patients is essential for successful analysis in basic, translational, and clinical research to obtain accurate and reliable results, despite differences between individuals. From the wide range of available assays and methods, it is necessary to select the suitable method for separation of skin compartments, which will provide preservation or high viability of skin cells or whole structures that will be analyzed or further processed. In this paper, we review and discuss skin separation methods and compare their features such as processing time, cell viability, location of the basement membrane after detachment of the epidermis from the dermis, and their application. Furthermore, we visualize different cell populations and structures in epidermal and dermal sheets using confocal microscopy. It is aimed to provide an overview of the optimal processing of human skin samples and their possible application.


Assuntos
Epiderme , Pele , Humanos , Células Epidérmicas , Membrana Basal , Microscopia Confocal
6.
Elife ; 112022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36223176

RESUMO

Skin is an active immune organ where professional antigen-presenting cells such as epidermal Langerhans cells (LCs) link innate and adaptive immune responses. While Reticulon 1A (RTN1A) was recently identified in LCs and dendritic cells in cutaneous and lymphoid tissues of humans and mice, its function is still unclear. Here, we studied the involvement of this protein in cytoskeletal remodeling and immune responses toward pathogens by stimulation of Toll-like receptors (TLRs) in resident LCs (rLCs) and emigrated LCs (eLCs) in human epidermis ex vivo and in a transgenic THP-1 RTN1A+ cell line. Hampering RTN1A functionality through an inhibitory antibody induced significant dendrite retraction of rLCs and inhibited their emigration. Similarly, expression of RTN1A in THP-1 cells significantly altered their morphology, enhanced aggregation potential, and inhibited the Ca2+ flux. Differentiated THP-1 RTN1A+ macrophages exhibited long cell protrusions and a larger cell body size in comparison to wild-type cells. Further, stimulation of epidermal sheets with bacterial lipoproteins (TLR1/2 and TLR2 agonists) and single-stranded RNA (TLR7 agonist) resulted in the formation of substantial clusters of rLCs and a significant decrease of RTN1A expression in eLCs. Together, our data indicate involvement of RTN1A in dendrite dynamics and structural plasticity of primary LCs. Moreover, we discovered a relation between activation of TLRs, clustering of LCs, and downregulation of RTN1A within the epidermis, thus indicating an important role of RTN1A in LC residency and maintaining tissue homeostasis.


Assuntos
Dendritos , Células de Langerhans , Proteínas do Tecido Nervoso , Animais , Dendritos/imunologia , Epiderme/metabolismo , Humanos , Imunidade , Células de Langerhans/imunologia , Lipoproteínas/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , RNA/metabolismo , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo
7.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34604909

RESUMO

The adult human skin contains a vast number of T cells that are essential for skin homeostasis and pathogen defense. T cells are first observed in the skin at the early stages of gestation; however, our understanding of their contribution to early immunity has been limited by their low abundance and lack of comprehensive methodologies for their assessment. Here, we describe a new workflow for isolating and expanding significant amounts of T cells from fetal human skin. Using multiparametric flow cytometry and in situ immunofluorescence, we found a large population with a naive phenotype and small populations with a memory and regulatory phenotype. Their molecular state was characterized using single-cell transcriptomics and TCR repertoire profiling. Importantly, culture of total fetal skin biopsies facilitated T cell expansion without a substantial impact on their phenotype, a major prerequisite for subsequent functional assays. Collectively, our experimental approaches and data advance the understanding of fetal skin immunity and potential use in future therapeutic interventions.


Assuntos
Feto , Citometria de Fluxo , Pele , Linfócitos T , Adulto , Feminino , Feto/citologia , Feto/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Pele/citologia , Pele/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia
8.
Eur J Pharm Biopharm ; 170: 1-9, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34798283

RESUMO

In previous studies, lecithin-based nanoemulsions (NEs) have been shown to be skin friendly drug carrier systems. Due to their nontoxic properties, NEs might also be suitable as wound healing agents. Hence, different O/W NEs based on lecithin Lipoid® S 75 and plant oils or medium chain triglycerides were produced and characterised. Two lipophilic natural wound healing agents, a betulin-enriched extract from birch bark (BET) and a purified spruce balm (PSB), were successfully incorporated and their effects on primary human skin cells were studied in vitro. MTT, BrdU and scratch assays uncovered the positive influence of the drug-loaded NEs on cell viability, proliferation and potential wound closure. Compared to control formulations, the NEs loaded with either BET or PSB led to higher cell viability rates of fibroblasts and keratinocytes. Higher proliferative activity of keratinocytes and fibroblasts was observed after the treatment, which is a prerequisite for wound closure. Indeed, in scratch assays NEs with PSB and notably BET showed significantly ameliorated wound closure rates than the negative control (unloaded NEs) and the positive control (NEs with dexpanthenol). Our findings suggest that BET and PSB are outstanding wound healing drugs and their incorporation into lecithin-based NEs may represent a valid strategy for wound care.


Assuntos
Lecitinas/farmacologia , Óleos de Plantas/farmacologia , Pele/citologia , Pele/efeitos dos fármacos , Triglicerídeos/farmacologia , Cicatrização/efeitos dos fármacos , Betula , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Emulsões , Humanos , Técnicas In Vitro , Picea , Triterpenos/farmacologia
10.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33561194

RESUMO

T cells in human skin play an important role in the immune defense against pathogens and tumors. T cells are present already in fetal skin, where little is known about their cellular phenotype and biological function. Using single-cell analyses, we identified a naive T cell population expressing αß and γδ T cell receptors (TCRs) that was enriched in fetal skin and intestine but not detected in other fetal organs and peripheral blood. TCR sequencing data revealed that double-positive (DP) αßγδ T cells displayed little overlap of CDR3 sequences with single-positive αß T cells. Gene signatures, cytokine profiles and in silico receptor-ligand interaction studies indicate their contribution to early skin development. DP αßγδ T cells were phosphoantigen responsive, suggesting their participation in the protection of the fetus against pathogens in intrauterine infections. Together, our analyses unveil a unique cutaneous T cell type within the native skin microenvironment and point to fundamental differences in the immune surveillance between fetal and adult human skin.


Assuntos
Feto/imunologia , Vigilância Imunológica , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Pele/embriologia , Pele/imunologia , Linfócitos T/imunologia , Adulto , Células Cultivadas , Citocinas/metabolismo , Voluntários Saudáveis , Humanos , Intestinos/embriologia , Intestinos/imunologia , Pessoa de Meia-Idade , RNA-Seq/métodos , Análise de Célula Única/métodos , Pele/crescimento & desenvolvimento , Transcriptoma
11.
Sci Immunol ; 6(55)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483337

RESUMO

Therapeutic options for autoimmune diseases typically consist of broad and targeted immunosuppressive agents. However, sustained clinical benefit is rarely achieved, as the disease phenotype usually returns after cessation of treatment. To better understand tissue-resident immune memory in human disease, we investigated patients with atopic dermatitis (AD) who underwent short-term or long-term treatment with the IL-4Rα blocker dupilumab. Using multi-omics profiling with single-cell RNA sequencing and multiplex proteomics, we found significant decreases in overall skin immune cell counts and normalization of transcriptomic dysregulation in keratinocytes consistent with clearance of disease. However, we identified specific immune cell populations that persisted for up to a year after clinical remission while being absent from healthy controls. These populations included LAMP3 + CCL22+ mature dendritic cells, CRTH2 + CD161 + T helper ("TH2A") cells, and CRTAM + cytotoxic T cells, which expressed high levels of CCL17 (dendritic cells) and IL13 (T cells). TH2A cells showed a characteristic cytokine receptor constellation with IL17RB, IL1RL1 (ST2), and CRLF2 expression, suggesting that these cells are key responders to the AD-typical epidermal alarmins IL-25, IL-33, and TSLP, respectively. We thus identified disease-linked immune cell populations in resolved AD indicative of a persisting disease memory, facilitating a rapid response system of epidermal-dermal cross-talk between keratinocytes, dendritic cells, and T cells. This observation may help to explain the disease recurrence upon termination of immunosuppressive treatments in AD, and it identifies potential disease memory-linked cell types that may be targeted to achieve a more sustained therapeutic response.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Células Dendríticas/imunologia , Dermatite Atópica/tratamento farmacológico , Linfócitos T Citotóxicos/imunologia , Células Th2/imunologia , Adolescente , Adulto , Anticorpos Monoclonais Humanizados/uso terapêutico , Biópsia , Estudos de Casos e Controles , Comunicação Celular/imunologia , Células Dendríticas/metabolismo , Dermatite Atópica/imunologia , Feminino , Voluntários Saudáveis , Humanos , Memória Imunológica , Subunidade alfa de Receptor de Interleucina-4/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-4/metabolismo , Queratinócitos , Masculino , Pessoa de Meia-Idade , RNA-Seq , Análise de Célula Única , Pele/citologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Linfócitos T Citotóxicos/metabolismo , Células Th2/metabolismo , Adulto Jovem
12.
Sci Rep ; 11(1): 32, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420112

RESUMO

Octenidine dihydrochloride (OCT) is a widely used antiseptic molecule, promoting skin wound healing accompanied with improved scar quality after surgical procedures. However, the mechanisms by which OCT is contributing to tissue regeneration are not yet completely clear. In this study, we have used a superficial wound model by tape stripping of ex vivo human skin. Protein profiles of wounded skin biopsies treated with OCT-containing hydrogel and the released secretome were analyzed using liquid chromatography-mass spectrometry (LC-MS) and enzyme-linked immunosorbent assay (ELISA), respectively. Proteomics analysis of OCT-treated skin wounds revealed significant lower levels of key players in tissue remodeling as well as reepithelization after wounding such as pro-inflammatory cytokines (IL-8, IL-6) and matrix-metalloproteinases (MMP1, MMP2, MMP3, MMP9) when compared to controls. In addition, enzymatic activity of several released MMPs into culture supernatants was significantly lower in OCT-treated samples. Our data give insights on the mode of action based on which OCT positively influences wound healing and identified anti-inflammatory and protease-inhibitory activities of OCT.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inibidores de Proteases/uso terapêutico , Piridinas/uso terapêutico , Cicatrização/efeitos dos fármacos , Administração Cutânea , Adulto , Anti-Inflamatórios/administração & dosagem , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Hidrogéis , Iminas , Pessoa de Meia-Idade , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/administração & dosagem , Proteômica , Piridinas/administração & dosagem , Pele/química , Pele/patologia
13.
J Invest Dermatol ; 141(5): 1198-1206.e13, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157095

RESUMO

WFDC proteins such as peptidase inhibitor 3 and SLPI inhibit proteases in the epidermis and other tissues. In this study, we tested the hypothesis that further WFDC protein family members might contribute to epidermal homeostasis. We found that in addition to peptidase inhibitor 3 and SLPI, WFDC5 and WFDC12 were expressed in human epidermis. In contrast to WFDC5, the expression of WFDC12 was induced during the late differentiation of keratinocytes and was restricted to the outermost layer of live cells. Single-cell RNA sequencing demonstrated that WFDC12-positive keratinocytes were characterized by the upregulation of LCE mRNA expression and downregulated the expression of keratins and claudins. Immunogold-electron microscopy revealed the colocalization of WFDC12 with corneodesmosomes in the lower stratum corneum. WFDC12 was elevated in the affected skin of patients with psoriasis, atopic dermatitis, and Darier disease. By contrast, WFDC12 expression was strongly upregulated not only in the affected but even more so in clinically normal-appearing skin of patients with Netherton syndrome. Finally, functional analysis showed distinct inhibitory activity of WFDC12 on neutrophil elastase and epidermal kallikrein‒related peptidase. Altogether, our study identified WFDC12 as a marker of the last stage of epidermal keratinocyte differentiation and suggests that WFDC12 contributes to the control of protease activity in the stratum corneum.


Assuntos
Epiderme/enzimologia , Queratinócitos/fisiologia , Proteínas/fisiologia , Inibidores de Serina Proteinase/fisiologia , Diferenciação Celular , Células Cultivadas , Humanos , Queratinócitos/química , Queratinócitos/citologia , Proteínas/análise , Serina Proteases/metabolismo
14.
J Allergy Clin Immunol ; 146(5): 1056-1069, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32344053

RESUMO

BACKGROUND: Atopic dermatitis (AD) is the most common chronic inflammatory skin disease, but its complex pathogenesis is only insufficiently understood, resulting in still limited treatment options. OBJECTIVE: We sought to characterize AD on both transcriptomic and proteomic levels in humans. METHODS: We used skin suction blistering, a painless and nonscarring procedure that can simultaneously sample skin cells and interstitial fluid. We then compared results with conventional biopsies. RESULTS: Suction blistering captured epidermal and most immune cells equally well as biopsies, except for mast cells and nonmigratory CD163+ macrophages that were only present in biopsy isolates. Using single-cell RNA sequencing, we found comparable transcriptional profiles of key inflammatory pathways between blister and biopsy AD, but suction blistering was superior in cell-specific resolution for high-abundance transcripts (KRT1/KRT10, KRT16/KRT6A, S100A8/S100A9), which showed some background signals in biopsy isolates. Compared with healthy controls, we found characteristic upregulation of AD-typical cytokines such as IL13 and IL22 in Th2 and Th22 cells, respectively, but we also discovered these mediators in proliferating T cells and natural killer T cells, that also expressed the antimicrobial cytokine IL26. Overall, not T cells, but myeloid cells were most strongly enriched in AD, and we found dendritic cell (CLEC7A, amphiregulin/AREG, EREG) and macrophage products (CCL13) among the top upregulated proteins in AD blister fluid proteomic analyses. CONCLUSION: These data show that by using cutting-edge technology, suction blistering offers several advantages over conventional biopsies, including better transcriptomic resolution of skin cells, combined with proteomic information from interstitial fluid, unraveling novel inflammatory players that shape the cellular and proteomic microenvironment of AD.


Assuntos
Dermatite Atópica/imunologia , Líquido Extracelular/metabolismo , Perfilação da Expressão Gênica/métodos , Células Mieloides/imunologia , Proteômica/métodos , Análise de Célula Única/métodos , Células Th2/imunologia , Calgranulina A/genética , Movimento Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Imunomodulação , Queratina-1/genética , Lectinas Tipo C/metabolismo , Proteínas Quimioatraentes de Monócitos/metabolismo , Especificidade de Órgãos
15.
Int J Pharm ; 580: 119209, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32165223

RESUMO

Surfactants are important ingredients in pharmaceutical and cosmetic formulations, as in creams, shampoos or shower gels. As conventional emulsifiers such as sodium dodecyl sulfate (SDS) have fallen into disrepute due to their skin irritation potential, the naturally occurring lecithins are being investigated as a potential alternative. Thus, lecithin-based nanoemulsions with and without the drug curcumin, known for its wound healing properties, were produced and characterised in terms of their particle size, polydispersity index (PDI) and zeta potential and compared to SDS-based formulations. In vitro toxicity of the produced blank nanoemulsions was assessed with primary human keratinocytes and fibroblasts using two different cell viability assays (BrdU and EZ4U). Further, we investigated the penetration profiles of the deployed surfactants and oil components using combined ATR-FTIR/tape stripping experiments and confirmed the ability of the lecithin-based nanoemulsions to deliver curcumin into the stratum corneum in tape stripping-UV/Vis experiments. All manufactured nanoemulsions showed droplet sizes under 250 nm with satisfying PDI and zeta potential values. Viability assays with human skin cells clearly indicated that lecithin-based nanoemulsions were superior to SDS-based formulations. ATR-FTIR tests showed that lecithin and oil components remained in the superficial layers of the stratum corneum, suggesting a low risk for skin irritation. Ex vivo tape stripping experiments revealed that the kind of oil used in the nanoemulsion seemed to influence the depth of curcumin penetration into the stratum corneum.


Assuntos
Bromodesoxiuridina/metabolismo , Curcumina/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Lecitinas/metabolismo , Absorção Cutânea/fisiologia , Tensoativos/metabolismo , Adulto , Idoso , Animais , Bromodesoxiuridina/administração & dosagem , Bromodesoxiuridina/química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Curcumina/administração & dosagem , Curcumina/química , Citotoxinas/administração & dosagem , Citotoxinas/química , Citotoxinas/metabolismo , Emulsões/administração & dosagem , Emulsões/química , Emulsões/metabolismo , Feminino , Aromatizantes/administração & dosagem , Aromatizantes/química , Aromatizantes/metabolismo , Humanos , Lecitinas/administração & dosagem , Lecitinas/química , Masculino , Pessoa de Meia-Idade , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/metabolismo , Absorção Cutânea/efeitos dos fármacos , Tensoativos/administração & dosagem , Tensoativos/química , Suínos , Fatores de Tempo , Adulto Jovem
16.
Sci Rep ; 10(1): 1, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913322

RESUMO

A large body of literature is available on wound healing in humans. Nonetheless, a standardized ex vivo wound model without disruption of the dermal compartment has not been put forward with compelling justification. Here, we present a novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour. Importantly, the basement membrane remained intact after blister roof removal and keratinocytes were absent in the wounded area. Upon six days of culture, the wound was covered with one to three-cell thick K14+Ki67+ keratinocyte layers, indicating that proliferation and migration were involved in wound closure. After eight to twelve days, a multi-layered epidermis was formed expressing epidermal differentiation markers (K10, filaggrin, DSG-1, CDSN). Investigations about immune cell-specific manners revealed more T cells in the blister roof epidermis compared to normal epidermis. We identified several cell populations in blister roof epidermis and suction blister fluid that are absent in normal epidermis which correlated with their decrease in the dermis, indicating a dermal efflux upon negative pressure. Together, our model recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.


Assuntos
Vesícula/imunologia , Reepitelização , Regeneração , Pele/citologia , Pele/imunologia , Cicatrização , Vesícula/patologia , Proliferação de Células , Células Cultivadas , Proteínas Filagrinas , Humanos , Queratinócitos/citologia , Queratinócitos/imunologia
17.
Front Cell Dev Biol ; 8: 608876, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542915

RESUMO

The endoplasmic reticulum-associated protein reticulon 1A (RTN1A) is primarily expressed in neuronal tissues but was recently identified also specifically in cells of the dendritic cell (DC) lineage, including epidermal Langerhans cells (LCs) and dermal DCs in human skin. In this study, we found that in mice major histocompatibility complex class II (MHCII)+CD207+ LCs but not dermal DCs express RTN1A. Further, RTN1A expression was identified in CD45+MHCII+CD207+ cells of the lymph node and spleen but not in the thymus. Of note, RTN1A was expressed in CD207 low LCs in adult skin as well as emigrated LCs and DCs in lymph nodes and marginally in CD207 hi cells. Ontogeny studies revealed that RTN1A expression occurred before the appearance of the LC markers MHCII and CD207 in LC precursors, while dermal DC and T cell precursors remained negative during skin development. Analogous to the expression of RTN1A in neural tissue, we identified expression of RTN1A in skin nerves. Immunostaining revealed co-localization of RTN1A with nerve neurofilaments only in fetal but not in newborn or adult dermis. Our findings suggest that RTN1A might be involved in the LC differentiation process given its early expression in LC precursors and stable expression onward. Further analysis of the RTN1A expression pattern will enable the elucidation of the functional roles of RTN1A in both the immune and the nervous system of the skin.

18.
Int J Pharm ; 566: 383-390, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31158455

RESUMO

As constituents of cellular membranes, lecithins feature high biocompatibility and great emulsifying properties due to their amphiphilicity. Additionally, there are expectations that these naturally occurring emulsifying agents can replace other skin damaging emulsifiers like sodium dodecyl sulfate or sodium laureth sulfate. However, cytotoxicity data of lecithin-based formulations on primary human skin cells are scarce. Thus, we developed nanoemulsions with different kinds of surfactants (amphoteric, anionic and non-ionic), studied the skin permeation of a model drug from this formulations employing Franz-type diffusion cells and monitored their cytotoxicity potential on primary human keratinocytes and fibroblasts using a cell proliferation assay. The skin diffusion studies demonstrated that the amphoteric lecithin-based emulsifiers were superior to non-ionic surfactants in terms of skin permeation, but inferior to anionic emulsifiers. Further, we found that the nanoemulsions containing the amphoteric lecithins as emulsifying agents lead to significantly higher viability rates of both epidermal keratinocytes and dermal fibroblasts than the investigated anionic and non-ionic surfactants. This renders them a promising alternative to conventional emulsifiers used in daily products.


Assuntos
Emulsificantes/administração & dosagem , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Lecitinas/administração & dosagem , Nanopartículas/administração & dosagem , Pele/metabolismo , Adulto , Idoso , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Emulsões , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pele/citologia , Absorção Cutânea , Suínos , Adulto Jovem
19.
J Immunol Res ; 2019: 5143635, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30944833

RESUMO

Ideal agents for the topical treatment of skin wounds should have antimicrobial efficacy without negative influence on wound healing. Octenidine (OCT) has become a widely used antiseptic in professional wound care, but its influence on several components of the wound healing process remains unclear. In the present study, we have used a superficial wound model using tape stripping on human full-thickness skin ex vivo to investigate the influence of OCT on epidermal Langerhans cells (LCs) and cytokine secretion pattern of skin cells during wound healing in a model without disruption of the normal skin structure. Histological and immunofluorescence studies showed that OCT neither altered human skin architecture nor the viability of skin cells upon 48 hours of culture in unwounded or wounded skin. The epidermis of explants and LCs remained morphologically intact throughout the whole culture period upon OCT treatment. OCT inhibited the upregulation of the maturation marker CD83 on LCs and prevented their emigration in wounded skin. Furthermore, OCT reduced both pro- and anti-inflammatory mediators (IL-8, IL-33, and IL-10), while angiogenesis and growth factor mediators (VEGF and TGF-ß1) remained unchanged in skin explant cultures. Our data provide novel insights into the host response to OCT in the biologically relevant environment of viable human (wounded) skin.


Assuntos
Anti-Infecciosos/farmacologia , Citocinas/genética , Epiderme/efeitos dos fármacos , Células de Langerhans/efeitos dos fármacos , Células de Langerhans/imunologia , Piridinas/farmacologia , Cicatrização/efeitos dos fármacos , Adulto , Citocinas/imunologia , Células Epidérmicas/efeitos dos fármacos , Células Epidérmicas/imunologia , Humanos , Iminas , Pessoa de Meia-Idade , Modelos Biológicos , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Fita Cirúrgica , Cicatrização/imunologia , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/imunologia , Adulto Jovem
20.
FASEB J ; 33(5): 6514-6525, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30807238

RESUMO

Skin resident T cells provide immediate immunologic responses at their specific location and play a role in the pathogenesis of skin diseases such as psoriasis. Recently, IL-9-producing T cells were described as a major T-cell subtype present in the skin, but knowledge on the biology and in situ regulation of this T-cell subtype is scarce. Here, we investigated the cytokine influence on skin T cells with focus on IL-9-producing T cells because a better understanding of their biology may identify novel therapeutic approaches. Healthy human skin biopsies were cultured either in the presence of IL-2, IL-4, and TGF-ß [T helper (Th)9-promoting condition (Th9-PC)] or IL-2 and IL-15 [standard condition (SC)]. Paired analysis of enzymatically isolated skin T cells and emigrated T cells after 4 wk of skin culture showed significant alterations of T-cell phenotypes, cytokine production, and IL-9-producing T-cell frequency. RNA sequencing analysis revealed differentially regulated pathways and identified CXCL8 and CXCL13 as top up-regulated genes in Th9-PC compared with SC. Functionally supernatant of stimulated skin-derived T cells, CXCL8 and CXCL13 increased neutrophil survival. We report that the cytokine environment alters skin-derived T-cell phenotype and functional properties.-Kienzl, P., Polacek, R., Reithofer, M., Reitermaier, R., Hagenbach, P., Tajpara, P., Vierhapper, M., Gschwandtner, M., Mildner, M. Jahn-Schmid, B., Elbe-Bürger, A. The cytokine environment influence on human skin-derived T cells.


Assuntos
Citocinas/imunologia , Regulação da Expressão Gênica/imunologia , Psoríase/imunologia , Pele/imunologia , Linfócitos T/imunologia , Técnicas de Cultura de Células , Células Cultivadas , Feminino , Humanos , Masculino , Psoríase/patologia , Pele/patologia , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA